The tables below lists the numbers of regular maps in each orientable genus of 2-manifold from 0 (the sphere) to 101 (a sphere with 101 handles), and in each non-orientable genus of 2-manifold from 1 (the projective plane) to 202 (a sphere with 202 cross-caps).
A second table below presents the same data with the rows grouped in tens, for statistical purposes.
The data are from C09.
genus | orientable | non-orientable | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
reflexible | chiral | all orientable | ||||||||||
dual pairs | self dual | total | dual pairs | self dual | total | dual pairs | self dual | total | dual pairs | self dual | total | |
0 | ∞ | 1 | ∞ | 0 | 0 | 0 | ∞ | 1 | ∞ | |||
1 1n | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | 1 | ∞ |
2 2n | 4 | 2 | 10 | 0 | 0 | 0 | 4 | 2 | 10 | 0 | 0 | 0 |
3 3n | 8 | 4 | 20 | 0 | 0 | 0 | 8 | 4 | 20 | 0 | 0 | 0 |
4 4n | 8 | 4 | 20 | 0 | 0 | 0 | 8 | 4 | 20 | 2 | 0 | 4 |
5 5n | 10 | 6 | 26 | 0 | 0 | 0 | 10 | 6 | 26 | 2 | 2 | 6 |
6 6n | 10 | 3 | 23 | 0 | 0 | 0 | 10 | 3 | 23 | 3 | 0 | 6 |
7 7n | 9 | 3 | 21 | 2 | 0 | 4 | 11 | 3 | 25 | 2 | 0 | 4 |
8 8n | 9 | 2 | 20 | 1 | 0 | 2 | 10 | 2 | 22 | 1 | 0 | 2 |
9 9n | 20 | 12 | 52 | 0 | 0 | 0 | 20 | 12 | 52 | 3 | 0 | 6 |
10 10n | 20 | 4 | 44 | 2 | 1 | 5 | 22 | 5 | 49 | 6 | 0 | 12 |
11 11n | 10 | 4 | 24 | 3 | 3 | 9 | 13 | 7 | 33 | 1 | 1 | 3 |
12 12n | 8 | 3 | 19 | 2 | 0 | 4 | 10 | 3 | 23 | 2 | 1 | 5 |
13 13n | 17 | 5 | 39 | 0 | 0 | 0 | 17 | 5 | 39 | 2 | 0 | 4 |
14 14n | 10 | 2 | 22 | 1 | 0 | 2 | 11 | 2 | 24 | 3 | 0 | 6 |
15 15n | 19 | 4 | 42 | 1 | 0 | 2 | 20 | 4 | 44 | 1 | 0 | 2 |
16 16n | 13 | 4 | 30 | 1 | 0 | 2 | 14 | 4 | 32 | 8 | 0 | 16 |
17 17n | 27 | 13 | 67 | 3 | 1 | 7 | 30 | 14 | 74 | 3 | 1 | 7 |
18 18n | 11 | 3 | 25 | 1 | 0 | 2 | 12 | 3 | 27 | 0 | 0 | 0 |
19 19n | 25 | 10 | 60 | 1 | 1 | 3 | 26 | 11 | 63 | 1 | 0 | 2 |
20 20n | 11 | 2 | 24 | 1 | 0 | 2 | 12 | 2 | 26 | 3 | 2 | 8 |
21 21n | 31 | 9 | 71 | 6 | 4 | 16 | 37 | 13 | 87 | 1 | 0 | 2 |
22 22n | 16 | 2 | 34 | 6 | 0 | 12 | 22 | 2 | 46 | 4 | 0 | 8 |
23 23n | 8 | 3 | 19 | 0 | 0 | 0 | 8 | 3 | 19 | 3 | 0 | 6 |
24 24n | 14 | 3 | 31 | 0 | 0 | 0 | 14 | 3 | 31 | 0 | 0 | 0 |
25 25n | 32 | 12 | 76 | 3 | 1 | 7 | 35 | 13 | 83 | 3 | 0 | 6 |
26 26n | 14 | 2 | 30 | 1 | 0 | 2 | 15 | 2 | 32 | 3 | 0 | 6 |
27 27n | 14 | 4 | 32 | 5 | 3 | 13 | 19 | 7 | 45 | 0 | 0 | 0 |
28 28n | 35 | 3 | 73 | 4 | 1 | 9 | 39 | 4 | 82 | 2 | 0 | 4 |
29 29n | 26 | 6 | 58 | 3 | 0 | 6 | 29 | 6 | 64 | 6 | 0 | 12 |
30 30n | 10 | 3 | 23 | 0 | 0 | 0 | 10 | 3 | 23 | 10 | 1 | 21 |
31 31n | 18 | 6 | 42 | 3 | 3 | 9 | 21 | 9 | 51 | 1 | 0 | 2 |
32 32n | 11 | 2 | 24 | 3 | 0 | 6 | 14 | 2 | 30 | 1 | 0 | 2 |
33 33n | 58 | 26 | 142 | 3 | 2 | 8 | 61 | 28 | 150 | 2 | 0 | 4 |
34 34n | 14 | 5 | 33 | 4 | 0 | 8 | 18 | 5 | 41 | 7 | 0 | 14 |
35 35n | 17 | 3 | 37 | 5 | 3 | 13 | 22 | 6 | 50 | 2 | 1 | 5 |
36 36n | 26 | 4 | 56 | 0 | 0 | 0 | 26 | 4 | 56 | 1 | 0 | 2 |
37 37n | 42 | 13 | 97 | 2 | 1 | 5 | 44 | 14 | 102 | 6 | 1 | 13 |
38 38n | 10 | 2 | 22 | 1 | 0 | 2 | 11 | 2 | 24 | 3 | 2 | 8 |
39 39n | 17 | 4 | 38 | 1 | 0 | 2 | 18 | 4 | 40 | 0 | 0 | 0 |
40 40n | 21 | 3 | 45 | 7 | 0 | 14 | 28 | 3 | 59 | 2 | 0 | 4 |
41 41n | 57 | 15 | 129 | 17 | 9 | 43 | 74 | 24 | 172 | 4 | 0 | 8 |
42 42n | 12 | 3 | 27 | 3 | 0 | 6 | 15 | 3 | 33 | 3 | 0 | 6 |
43 43n | 22 | 5 | 49 | 10 | 0 | 20 | 32 | 5 | 69 | 1 | 0 | 2 |
44 44n | 10 | 2 | 22 | 1 | 0 | 2 | 11 | 2 | 24 | 4 | 2 | 10 |
45 45n | 37 | 7 | 81 | 2 | 0 | 4 | 39 | 7 | 85 | 1 | 0 | 2 |
46 46n | 33 | 4 | 70 | 7 | 1 | 15 | 40 | 5 | 85 | 8 | 0 | 16 |
47 47n | 10 | 3 | 23 | 0 | 0 | 0 | 10 | 3 | 23 | 6 | 0 | 12 |
48 48n | 14 | 3 | 31 | 0 | 0 | 0 | 14 | 3 | 31 | 0 | 0 | 0 |
49 49n | 80 | 27 | 187 | 7 | 2 | 16 | 87 | 29 | 203 | 4 | 0 | 8 |
50 50n | 16 | 2 | 34 | 6 | 1 | 13 | 22 | 3 | 47 | 7 | 2 | 16 |
51 51n | 28 | 7 | 63 | 12 | 8 | 32 | 40 | 15 | 95 | 1 | 0 | 2 |
52 52n | 16 | 2 | 34 | 3 | 0 | 6 | 19 | 2 | 40 | 7 | 0 | 14 |
53 53n | 23 | 5 | 51 | 9 | 4 | 22 | 32 | 9 | 73 | 2 | 0 | 4 |
54 54n | 17 | 3 | 37 | 0 | 0 | 0 | 17 | 3 | 37 | 0 | 0 | 0 |
55 55n | 48 | 9 | 105 | 5 | 4 | 14 | 53 | 13 | 119 | 1 | 0 | 2 |
56 56n | 22 | 3 | 47 | 4 | 0 | 8 | 26 | 3 | 55 | 7 | 0 | 14 |
57 57n | 60 | 12 | 132 | 3 | 0 | 6 | 63 | 12 | 138 | 5 | 1 | 11 |
58 58n | 15 | 3 | 33 | 9 | 0 | 18 | 24 | 3 | 51 | 10 | 0 | 20 |
59 59n | 8 | 3 | 19 | 6 | 3 | 15 | 14 | 6 | 34 | 0 | 0 | 0 |
60 60n | 17 | 3 | 37 | 0 | 0 | 0 | 17 | 3 | 37 | 0 | 0 | 0 |
61 61n | 28 | 9 | 65 | 11 | 6 | 28 | 39 | 15 | 93 | 3 | 0 | 6 |
62 62n | 9 | 2 | 20 | 3 | 0 | 6 | 12 | 2 | 26 | 6 | 1 | 13 |
63 63n | 22 | 4 | 48 | 2 | 0 | 4 | 24 | 4 | 52 | 0 | 0 | 0 |
64 64n | 39 | 4 | 82 | 20 | 0 | 40 | 59 | 4 | 122 | 5 | 0 | 10 |
65 65n | 98 | 44 | 240 | 12 | 6 | 30 | 110 | 50 | 270 | 5 | 1 | 11 |
66 66n | 19 | 4 | 42 | 0 | 0 | 0 | 19 | 4 | 42 | 5 | 0 | 10 |
67 67n | 19 | 5 | 43 | 3 | 0 | 6 | 22 | 5 | 49 | 1 | 0 | 2 |
68 68n | 13 | 2 | 28 | 1 | 0 | 2 | 14 | 2 | 30 | 1 | 0 | 2 |
69 69n | 44 | 8 | 96 | 5 | 4 | 14 | 49 | 12 | 110 | 1 | 0 | 2 |
70 70n | 15 | 2 | 32 | 1 | 0 | 2 | 16 | 2 | 34 | 7 | 0 | 14 |
71 71n | 18 | 3 | 39 | 10 | 3 | 23 | 28 | 6 | 62 | 0 | 0 | 0 |
72 72n | 20 | 3 | 43 | 2 | 0 | 4 | 22 | 3 | 47 | 9 | 0 | 18 |
73 73n | 98 | 22 | 218 | 9 | 1 | 19 | 107 | 23 | 237 | 4 | 0 | 8 |
74 74n | 13 | 2 | 28 | 2 | 0 | 4 | 15 | 2 | 32 | 2 | 0 | 4 |
75 75n | 26 | 4 | 56 | 5 | 3 | 13 | 31 | 7 | 69 | 0 | 0 | 0 |
76 76n | 31 | 4 | 66 | 1 | 0 | 2 | 32 | 4 | 68 | 2 | 0 | 4 |
77 77n | 40 | 5 | 85 | 4 | 0 | 8 | 44 | 5 | 93 | 3 | 1 | 7 |
78 78n | 21 | 3 | 45 | 4 | 0 | 8 | 25 | 3 | 53 | 4 | 0 | 8 |
79 79n | 17 | 4 | 38 | 13 | 3 | 29 | 30 | 7 | 67 | 2 | 0 | 4 |
80 80n | 18 | 2 | 38 | 1 | 0 | 2 | 19 | 2 | 40 | 1 | 0 | 2 |
81 81n | 151 | 30 | 332 | 29 | 12 | 70 | 180 | 42 | 402 | 3 | 0 | 6 |
82 82n | 77 | 5 | 159 | 12 | 2 | 26 | 89 | 7 | 185 | 10 | 0 | 20 |
83 83n | 15 | 3 | 33 | 4 | 3 | 11 | 19 | 6 | 44 | 3 | 1 | 7 |
84 84n | 17 | 3 | 37 | 0 | 0 | 0 | 17 | 3 | 37 | 1 | 0 | 2 |
85 85n | 62 | 14 | 138 | 14 | 0 | 28 | 76 | 14 | 166 | 3 | 0 | 6 |
86 86n | 14 | 2 | 30 | 1 | 0 | 2 | 15 | 2 | 32 | 15 | 2 | 32 |
87 87n | 15 | 4 | 34 | 4 | 0 | 8 | 19 | 4 | 42 | 0 | 0 | 0 |
88 88n | 20 | 2 | 42 | 5 | 0 | 10 | 25 | 2 | 52 | 4 | 0 | 8 |
89 89n | 58 | 14 | 130 | 4 | 1 | 9 | 62 | 15 | 139 | 2 | 0 | 4 |
90 90n | 18 | 3 | 39 | 1 | 0 | 2 | 19 | 3 | 41 | 10 | 0 | 20 |
91 91n | 51 | 20 | 122 | 17 | 10 | 44 | 68 | 30 | 166 | 1 | 0 | 2 |
92 92n | 16 | 3 | 35 | 10 | 0 | 20 | 26 | 3 | 55 | 4 | 1 | 9 |
93 93n | 29 | 6 | 64 | 6 | 0 | 12 | 35 | 6 | 76 | 4 | 0 | 8 |
94 94n | 20 | 4 | 44 | 9 | 0 | 18 | 29 | 4 | 62 | 3 | 0 | 6 |
95 95n | 17 | 3 | 37 | 0 | 0 | 0 | 17 | 3 | 37 | 0 | 0 | 0 |
96 96n | 26 | 3 | 55 | 2 | 0 | 4 | 28 | 3 | 59 | 2 | 0 | 4 |
97 97n | 139 | 45 | 323 | 20 | 4 | 44 | 159 | 49 | 367 | 8 | 0 | 16 |
98 98n | 16 | 2 | 34 | 2 | 0 | 4 | 18 | 2 | 38 | 9 | 3 | 21 |
99 99n | 36 | 7 | 79 | 2 | 0 | 4 | 38 | 7 | 83 | 0 | 0 | 0 |
100 100n | 51 | 3 | 105 | 0 | 0 | 0 | 51 | 3 | 105 | 3 | 0 | 6 |
101 101n | 42 | 14 | 98 | 21 | 10 | 52 | 63 | 24 | 150 | 11 | 1 | 23 |
102 | 1 | 0 | 2 | |||||||||
103 | 1 | 0 | 2 | |||||||||
104 | 4 | 0 | 8 | |||||||||
105 | 2 | 0 | 4 | |||||||||
106 | 18 | 0 | 36 | |||||||||
107 | 1 | 0 | 2 | |||||||||
108 | 0 | 0 | 0 | |||||||||
109 | 3 | 0 | 6 | |||||||||
110 | 5 | 2 | 12 | |||||||||
111 | 0 | 0 | 0 | |||||||||
112 | 8 | 2 | 18 | |||||||||
113 | 3 | 0 | 6 | |||||||||
114 | 10 | 0 | 20 | |||||||||
115 | 1 | 0 | 2 | |||||||||
116 | 3 | 0 | 6 | |||||||||
117 | 1 | 0 | 2 | |||||||||
118 | 2 | 0 | 4 | |||||||||
119 | 5 | 2 | 12 | |||||||||
120 | 0 | 0 | 0 | |||||||||
121 | 7 | 0 | 14 | |||||||||
122 | 6 | 2 | 14 | |||||||||
123 | 0 | 0 | 0 | |||||||||
124 | 4 | 0 | 8 | |||||||||
125 | 2 | 0 | 4 | |||||||||
126 | 1 | 0 | 2 | |||||||||
127 | 1 | 0 | 2 | |||||||||
128 | 2 | 0 | 4 | |||||||||
129 | 3 | 0 | 6 | |||||||||
130 | 14 | 0 | 28 | |||||||||
131 | 0 | 0 | 0 | |||||||||
132 | 2 | 0 | 4 | |||||||||
133 | 3 | 0 | 6 | |||||||||
134 | 12 | 0 | 24 | |||||||||
135 | 0 | 0 | 0 | |||||||||
136 | 4 | 0 | 8 | |||||||||
137 | 11 | 0 | 22 | |||||||||
138 | 0 | 0 | 0 | |||||||||
139 | 1 | 0 | 2 | |||||||||
140 | 1 | 0 | 2 | |||||||||
141 | 2 | 0 | 4 | |||||||||
142 | 19 | 0 | 38 | |||||||||
143 | 0 | 0 | 0 | |||||||||
144 | 1 | 0 | 2 | |||||||||
145 | 10 | 1 | 21 | |||||||||
146 | 13 | 1 | 27 | |||||||||
147 | 1 | 0 | 2 | |||||||||
148 | 3 | 0 | 6 | |||||||||
149 | 3 | 0 | 6 | |||||||||
150 | 6 | 0 | 12 | |||||||||
151 | 1 | 0 | 2 | |||||||||
152 | 5 | 0 | 10 | |||||||||
153 | 2 | 0 | 4 | |||||||||
154 | 14 | 0 | 28 | |||||||||
155 | 7 | 0 | 14 | |||||||||
156 | 6 | 0 | 12 | |||||||||
157 | 4 | 0 | 8 | |||||||||
158 | 2 | 0 | 4 | |||||||||
159 | 0 | 0 | 0 | |||||||||
160 | 4 | 0 | 8 | |||||||||
161 | 4 | 0 | 8 | |||||||||
162 | 16 | 1 | 33 | |||||||||
163 | 1 | 0 | 2 | |||||||||
164 | 9 | 0 | 18 | |||||||||
165 | 1 | 0 | 2 | |||||||||
166 | 6 | 0 | 12 | |||||||||
167 | 5 | 0 | 10 | |||||||||
168 | 0 | 0 | 0 | |||||||||
169 | 5 | 0 | 10 | |||||||||
170 | 21 | 0 | 42 | |||||||||
171 | 0 | 0 | 0 | |||||||||
172 | 5 | 0 | 10 | |||||||||
173 | 6 | 1 | 13 | |||||||||
174 | 4 | 0 | 8 | |||||||||
175 | 1 | 0 | 2 | |||||||||
176 | 2 | 0 | 4 | |||||||||
177 | 11 | 0 | 22 | |||||||||
178 | 9 | 0 | 18 | |||||||||
179 | 0 | 0 | 0 | |||||||||
180 | 1 | 0 | 2 | |||||||||
181 | 4 | 0 | 8 | |||||||||
182 | 15 | 3 | 33 | |||||||||
183 | 0 | 0 | 0 | |||||||||
184 | 8 | 0 | 16 | |||||||||
185 | 2 | 0 | 4 | |||||||||
186 | 4 | 0 | 8 | |||||||||
187 | 1 | 0 | 2 | |||||||||
188 | 2 | 0 | 4 | |||||||||
189 | 1 | 0 | 2 | |||||||||
190 | 10 | 0 | 20 | |||||||||
191 | 11 | 4 | 26 | |||||||||
192 | 1 | 0 | 2 | |||||||||
193 | 6 | 0 | 12 | |||||||||
194 | 5 | 0 | 10 | |||||||||
195 | 0 | 0 | 0 | |||||||||
196 | 5 | 0 | 10 | |||||||||
197 | 6 | 1 | 13 | |||||||||
198 | 10 | 0 | 20 | |||||||||
199 | 1 | 0 | 2 | |||||||||
200 | 23 | 4 | 50 | |||||||||
201 | 3 | 0 | 6 | |||||||||
202 | 12 | 0 | 24 |
genus | orientable | non-orientable | Proportion of all that are non- orientable |
Proportion of orientable that are chiral |
Proportion of all that are self-dual | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
reflexible | chiral | all orientable | |||||||||||||
dual pairs | self dual | total | dual pairs | self dual | total | dual pairs | self dual | total | dual pairs | self dual | total | ||||
2 ‒ 11 | 108 | 44 | 260 | 8 | 4 | 20 | 116 | 48 | 280 | 20 | 3 | 43 | 13% | 7% | 16% |
12 ‒ 21 | 172 | 55 | 399 | 17 | 6 | 40 | 189 | 61 | 439 | 24 | 4 | 52 | 11% | 9% | 13% |
22 ‒ 31 | 187 | 44 | 418 | 25 | 8 | 58 | 212 | 52 | 476 | 32 | 1 | 65 | 12% | 12% | 10% |
32 ‒ 41 | 273 | 77 | 623 | 43 | 15 | 101 | 316 | 92 | 724 | 28 | 4 | 60 | 8% | 14% | 12% |
42 ‒ 51 | 262 | 63 | 587 | 48 | 12 | 108 | 310 | 75 | 695 | 35 | 4 | 74 | 10% | 16% | 10% |
52 ‒ 61 | 254 | 52 | 560 | 50 | 17 | 117 | 304 | 69 | 677 | 35 | 1 | 71 | 9% | 17% | 9% |
62 ‒ 71 | 296 | 78 | 670 | 57 | 13 | 127 | 353 | 91 | 797 | 31 | 2 | 64 | 7% | 16% | 11% |
72 ‒ 81 | 435 | 79 | 949 | 70 | 19 | 159 | 505 | 98 | 1108 | 30 | 1 | 61 | 5% | 14% | 8% |
82 ‒ 91 | 347 | 70 | 764 | 62 | 16 | 140 | 409 | 86 | 904 | 49 | 3 | 101 | 10% | 15% | 9% |
92 ‒ 101 | 392 | 90 | 874 | 72 | 14 | 158 | 464 | 104 | 1032 | 44 | 5 | 93 | 8% | 15% | 10% |